ФИЗИЧЕСКИЕ ОСНОВЫ ИССЛЕДОВАНИЯ ЗЕМЛИ ИЗ КОСМОСА

РАССЕЯНИЕ РАДИОВОЛН МОРСКОЙ ПОВЕРХНОСТЬЮ ПРИ БИСТАТИЧЕСКОЙ ЛОКАЦИИ

© 2009 г. В. Г. Бондур^{1*}, А. Д. Доброзраков², А. С. Курекин³, А. А. Курекин⁴, А. П. Пичугин², С. Е. Яцевич³

¹Государственное учреждение Научный центр аэрокосмического мониторинга "Аэрокосмос" Министерства образования и науки РФ и РАН, Москва

²ОАО "Газпром промгаз", Москва ³Институт радиофизики и электроники им. А.Я. Усикова, НАН Украины, Харьков ⁴Университет Ланкастера, Престон, Великобритания *E-mail: vgbondur@aerocosmos.info Поступила в редакцию 22.06.2009 г.

Приведены результаты измерений и теоретических расчетов удельной эффективной поверхности рассеяния радиоволн длиной 3.2 и 10 см при бистатической радиолокации морской поверхности. Анализируются особенности рассеяния морским волнением радиоволн при различных поляризациях излучения и приеме в верхней полусфере пространства. Экспериментальные данные сопоставлены с результатами расчетов на основе модели избирательного механизма рассеяния радиоволн морской поверхностью. Получено хорошее соответствие результатов измерений и модельных расчетов для различных условий бистатической радиолокации.

Ключевые слова: морская поверхность, бистатическая радиолокация, поляризация, двухпозиционное рассеяние, моделирование.

ВВЕДЕНИЕ

С расширением возможностей применения радиолокационных систем (РЛС), размещаемых на различных аэрокосмических платформах, и развитием новых технологий обработки сигналов значительно возрос интерес к использованию радиолокационных данных, полученных при бистатической локации, когда облучение ведется из одной точки, а прием осуществляется в другом месте (Hartnet and Davis, 2001; Вопросы..., 2003; Анохин, Горшков, 2006; Курекин и др., 2008).

Морская радиолокация занимает особое место среди множества областей применений РЛС. Это обусловлено, прежде всего, тем, что отражения от поверхности океана несут информацию о степени волнения, наличии течений, внутренних волнах, антропогенных воздействиях, загрязненности нефтепродуктами и т.д. (Бондур, 2004; Бондур, Гребенюк, 2001). В связи с этим необходимы надежные методы расчета характеристик рассеяния радиоволн взволнованной поверхностью моря, что в конечном итоге позволит оптимально проектировать РЛС.

Как известно, механизм рассеяния радиоволн от случайной шероховатой поверхности носит избирательный характер. Элементы поверхности определенных размеров создают резонансные компоненты рассеянных радиосигналов (Калмыков и др., 1966а; Басс, Фукс, 1972). Рассеяние радиоволн морской поверхностью для совмещенной радиолокации исследовано достаточно подробно как экспериментально, так и теоретически. Основные закономерности хорошо объясняются в рамках избирательного механизма рассеяния (Калмыков и др., 1966а; Bass et al., 1968; Басс, Фукс, 1972; Бондур, 2004).

Однако рассеяние волн при разносе передатчика и приемника изучено недостаточно. Так, в работе (Moore, Parkins, 1966) измерения проведены на акустических волнах. При этом не изучено влияние поляризационных эффектов. В работе (Pidgeon, 1966) получена диаграмма рассеяния радиоволн на длине волны $\lambda = 5$ см в угломестной плоскости, однако исследование особенностей поляризованных сигналов и сопоставление с теоретическими расчетами не проведено.

В настоящей работе представлены результаты натурных измерений радиоизлучения, рассеянного морской поверхностью на волнах длиной 3.2 и 10 см при бистатической локации, и проведено сопоставление с результатами расчетов, выполненных в рамках модели избирательного механизма рассеяния (Калмыков и др., 1966а; Bass

Рис. 1. Фотография экрана индикатора приемника (первый импульс — зондирующий, второй — отражения от моря, двусторонний указывает место импульса стробирования).

et al., 1968; Басс, Фукс, 1972). Получены значения удельной эффективной поверхности рассеяния (УЭПР) σ_{π}^{0} морской поверхности для различных вариантов разнесения средств облучения и приема.

МЕТОДИКА ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТОВ

При измерениях двухпозиционного рассеяния приемник и передатчик располагались на берегу Севастопольской бухты Черного моря. Величина азимутального разнесения изменялась путем перемещения приемника, установленного на автомобиле.

Расстояние до рассеивающего пятна на море составляло несколько сотен метров. На рис. 1 приведена фотография индикатора приемника в процессе бистатической локации морской поверхности. Импульс, пришедший непосредственно от передатчика, запускал развертку индикатора. Рассеянный морем сигнал приходил с некоторым запаздыванием $\Delta \tau$. Измерения проводились при длительности импульса передатчика 0.5 мкс, такой же была длительность импульса стробирования приемника. Поляризации излучения и приема — линейные, степень разделения ортогональных компонент в приемнике — около 25 дБ.

Для определения УЭПР σ_{d}^{0} в абсолютных величинах измерялся прямой сигнал передатчика P_{np} (при наведении передающей и приемной антенн друг на друга)

$$P_{\rm np} = \frac{P_{\rm nep}G_{\rm nep}G_{\rm nep}G_{\rm np}\lambda^2}{4\pi R_3^2},$$
 (1)

где $P_{\rm nep}$ – мощность излучения передатчика в импульсе, $G_{\rm nep}$ – коэффициент усиления передатчика, $G_{\rm np}$ – коэффициент усиления приемника, λ – длина волны излучения, R_3 – расстояние передатчик–приемник.

Мощность *P*_p рассеянного морем сигнала определяется как

$$P_{\rm p} = \frac{P_{\rm nep} G_{\rm nep}}{4\pi R_1^2} \frac{\sigma_{\rm n}^0 S_0}{4\pi R_2^2} \frac{G_{\rm np} \lambda^2}{4\pi},$$
 (2)

где S_0 — площадь освещаемого пятна на море, R_1 — расстояние от передатчика до рассеивающего пятна на море, R_2 — расстояние от приемника до рассеивающего пятна на море.

Из (1) и (2) получаем

$$\sigma_{\pi}^{0} = \frac{4\pi P_{\rm p} R_{1}^{2} R_{2}^{2}}{P_{\rm np} R_{3}^{2} S_{0}}.$$
(3)

Таким образом, измерив в относительных единицах прямой P_{np} и рассеянный P_p сигналы, и зная расстояния R_1 , R_2 , R_3 , а также S_0 , можно определить абсолютное значение σ_n^0 .

Значения σ_{α}^{0} , измеренные для длин волн 3.2 см и 10 см при вертикальной σ_{α}^{0BB} и горизонтальной $\sigma_{\alpha}^{0\Gamma\Gamma}$ поляризациях излучения и приема, приведены в табл. 1.

Измерения проведены при слабом волнении (высота волн H < 10 см, когда на море наблюдалась лишь мелкая ветровая рябь) и сильном волнении, когда высота волн достигала 2.5 м.

Из табл. 1 видно, что поляризационное отношение $\delta = \sigma_{\pi}^{0BB} / \sigma_{\pi}^{0\Gamma\Gamma}$ падает с усилением волнения. Значения δ приведены на рис. 2. Светлые значки соответствуют спокойному морю, темные – бурному. При малых азимутальных разнесениях и спокойном море $\delta \sim 20$ дБ, а при сильном волнении оно составляет всего несколько дБ. Изменение угла азимутального разнесения до 68° не сказывается на значении δ . При азимутальном разнесении, близком к 90°, значение δ превышает 40 дБ при спокойном море и даже при наличии крупных волн не падает ниже 20 дБ.

Кроме измерения энергетических характеристик рассеянного сигнала, в нескольких экспериментах при спокойном море определялось смещение частоты рассеянного сигнала относительно зондирующего. Для этого при азимутальном

РАССЕЯНИЕ РАДИОВОЛН МОРСКОЙ ПОВЕРХНОСТЬЮ

Состояние моря	ф, град	ψ ₁ , град	ψ ₂ , град	$\sigma_{\rm g}^{0 {\rm B} {\rm B}}$, дБ $\lambda = 3.2 \ {\rm cm}$	σ _д ^{0ГТ} , дБ λ=3.2 см	σ _д ^{0BB} , дБ λ = 10 см	$\sigma_{a}^{0\Gamma\Gamma}$, дБ $\lambda = 10$ см
Мелкая ветровая рябь	2	1.7	1.7	-43	_	-48	—
То же	4	3.4	3.4	-39	-63	-37	_
»	92	3.2	1.7	-41	-82	-40	_
Крупные волны	4	3.4	3.4	-30	-37	-32	-35
То же	8	4.6	4.6	_	-34	_	-27
»	46	2.2	2.7	-33	-41	_	—
»	68	2.9	5.2	-34	-38	-30	-35
»	92	3.2	1.7		-51	-35	-55

Таблица 1. Экспериментальные значения УЭПР для двух типов волнения морской поверхности

разнесении $\phi = 90^{\circ}$ длительность импульса передатчика увеличивалась до 1 или 2 мкс. Вследствие того, что частота рассеянного морем сигнала смещена относительно частоты зондирующего на величину, обусловленную скоростью рассеивателей, при их интерференции (рис. 1) в спектре огибающей суммарного сигнала появляются составляющие с частотой смещения рассеянного сигнала.

На рис. 3 приведен спектр суммарного радиосигнала. Помимо амплитудных флуктуаций (они, как были и до интерференции, являются низкочастотными сигналами с шириной спектра 1.0— 1.5 Гц на длине волны $\lambda = 10$ см) наблюдаются частоты смещения со средним значением $F_0 =$ = 4.6 Гц.

Рис. 2. Зависимость поляризационного отношения от угла разнесения для разных волнений.

ИССЛЕДОВАНИЕ ЗЕМЛИ ИЗ КОСМОСА № 6 2009

СОПОСТАВЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И РАСЧЕТОВ

Чтобы определить, в какой мере полученные экспериментальные данные могут быть истолкованы в рамках избирательного механизма рассеяния, произведем расчет некоторых характеристик рассеянного сигнала. Согласно основному положению теории, рассеяние радиоволн случайными поверхностями определяется мелкомасштабными составляющими волнения с волновым числом (Басс, Фукс, 1972)

$$\chi_0 = k(\beta_+ - \alpha_+), \qquad (4)$$

где $k = 2\pi/\lambda$, α_+ и β_+ – проекции единичных векторов α и β на горизонтальную плоскость (рис. 4).

В отсутствие крупномасштабных образований значение поля сигнала *E*, рассеянного в верхней полусфере, может быть получено из уравнения (8), приведенного в работе (Фукс, 1966). После неко-

Рис. 3. Спектр сигнала при интерференции рассеянного морем сигнала с зондирующим.

Рис. 4. Обозначения к выводу формул для σ_n^0 .

торых преобразований этого уравнения для горизонтальной поляризации излучения и приема имеем

$$E_{\Gamma\Gamma} = \frac{2k^2 \sin \psi_1 \sin \psi_2 \cos \varphi}{R_1 R_2} \exp[ik(R_1 + R_2)]\xi(\chi_0),$$
(5)

где $\xi(\chi_0) = \frac{1}{2\pi} \int_{S_0} \xi(r) \exp(-i\chi_0 r) dr - \Phi$ урье-компо-

нента морских волн ξ с волновым числом χ_0 , которое определяется согласно (4); r – радиус кривизны поверхности. Другие обозначения в (5) поясняются на рис. 4.

Для поля *E* с вертикальной поляризацией при учете, что $\varepsilon \gg 1$ (например, при $\lambda = 3$ см, $\varepsilon = 55 - i30$), получаем

$$E_{\rm BB} = \frac{2\varepsilon\sin\psi_1\sin\psi_2(\cos\varphi + \cos\psi_1\cos\psi_2)}{(1+\sqrt{\varepsilon}\sin\psi_1)(1+\sqrt{\varepsilon}\sin\psi_2)} \times (6)$$
$$\times \exp[ik(R_1+R_2)]\xi(\chi_0).$$

Удельная эффективная поверхность двухпозиционного рассеяния σ_{π}^{0} определяется как

$$\sigma_{\pi}^{0} = \frac{4\pi (\overline{EE^{*}})R_{2}^{2}}{S_{0}|E_{0}|^{2}},$$
(7)

где E_0 — электрическая составляющая поля волны у рассеивающей поверхности; E — электрическая составляющая поля волны, рассеянной поверхностью на расстоянии R_2 в дальней зоне.

Учитывая (5) и (6), получаем

$$\sigma_{\mu}^{0\Gamma\Gamma} = 16\pi k^4 \sin^2 \psi_1 \sin^2 \psi_2 \cos^2 \varphi S(\chi_0); \qquad (8)$$

$$\sigma_{\pi}^{0BB} = \frac{16\pi kc^4 \sin^2 \psi_1 \sin^2 \psi_2 (\cos\varphi + \cos\psi_1 \cos\psi_2)^2}{\left[(1 + \eta_1 \sin\psi_1)^2 + \eta_2^2 \sin^2 \psi_1 \right] \left[(1 + \eta_2 \sin\psi_2)^2 + \eta_2^2 \sin^2 \psi_2 \right]} S(\chi_0), \tag{9}$$

где $c = \varepsilon \varepsilon^*, \eta_1 - i\eta_2 = \sqrt{\varepsilon}.$

В выражениях (8) и (9) $S(\chi_0)$ – спектральная плотность составляющих морского волнения с волновым числом χ_0 .

$$S(\chi_0) = \frac{1}{(2\pi)^2} \int_{S_0} W(\rho) e^{-i\chi\rho} d\rho, a$$

$$W(\rho) = \int \xi(r) \xi(r+\rho) dr,$$
(10)

где $W(\rho) - функция корреляции неровностей по$ верхности.

 S_{α}

Для модуля волнового числа χ_0 , определяемого согласно (4), имеем

$$\chi_0 = k \sqrt{(\cos^2 \psi_1 + \cos^2 \psi_2 + 2\cos \psi_1 \cos \psi_2 \cos \varphi)},$$
(11)

при малых углах скольжения ($\psi_{1, 2} < 10^{\circ}$) справедливо

$$\chi_0 \approx 2k\cos(\varphi/2). \tag{12}$$

Таким образом, при малых углах скольжения сигнал двухпозиционного рассеяния определяется морскими волнами длиной $\Lambda_0 = \lambda/(2\cos\varphi/2)$, движущимися по биссектрисе угла между направлениями на передатчик и приемник. Отсюда центральная частота смещения рассеянного сигнала определяется как $F_0 = \sqrt{g\cos(\varphi/2)/\pi\lambda}$ (здесь g – ускорение силы тяжести).

Для $\lambda = 10$ см и $\varphi = 92^{\circ}$ имеем $F_0 = 4.66$ Гц, что достаточно хорошо совпадает с измеренным значением частоты 4.6 Гц (см. рис. 3). Это свидетельствует об избирательном характере двухпозиционного рассеяния радиоволн поверхностью моря.

Сопоставим с расчетом экспериментальные данные для абсолютных значений σ_{π}^{0} . Для этого в (8) и (9) необходимо учесть пространственный спектр волнения $S(\chi_{0})$. Примем $S(\chi_{0}) = B\chi^{-4}$, где $B = (2-6) \times 10^{-3}$ (Филипс, 1969). Такой вид спектра хорошо объясняет особенности обратно рассеянного сигнала.

ф, град	ψ ₁ , град	ψ ₂ , град	$\sigma_{\rm g}^{0{\rm BB}}$, дБ $\lambda = 3.2~{ m cm}$	σ _д ^{0ГТ} , дБ λ =3.2 см	σ _д ^{0 BB} , дБ λ = 10 см	σ _д ^{0ГГ} , дБ λ = 10 см				
2	1.7	1.7	-4044 (-43)	-7781 -	-4044 (-48)	-7781 -				
4	3.4	3.4	-3034 (-39)	-6468 (-63)	-3034 (-37)	-6468 -				
92	3.2	1.7	-4044	-9498	-4044	-9498				

(-41)

Таблица 2. Расчетные и экспериментальные (в скобках) значения УЭПР для двух поляризаций излучения (верхнее значение) и приема (нижнее значение)

Результаты расчетов σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ для условий, при которых выполнены измерения, и для спокойного моря приведены в табл. 2. В скобках указаны экспериментальные данные. Анализ табл. 2 показывает, что согласие экспериментальных и рассчитанных значений достаточно хорошее.

Более сложным является сопоставление результатов расчетов с экспериментальными данными при сильном волнении. Предположим, что крупные волны лишь изменяют угол наклона ү рассеивающей ряби. Угол ү можно определить из сопоставления данных для двух углов скольжения в режиме двухполяризационной радиолокации. Наиболее просто этот угол определяется в случае измерения интенсивности обратного рассеяния при горизонтальной поляризации

$$tg\gamma = (\sin\psi' - a\sin\psi'')/(a-1), \qquad (13)$$

где
$$a = \sqrt[4]{\sigma_{\mathrm{g}}^{0\Gamma\Gamma}(\psi')/\sigma_{\mathrm{g}}^{0\Gamma\Gamma}(\psi'')}$$
.

Изданных табл. 1 имеем $\sigma_{\pi}^{0\Gamma\Gamma} = -34 \, \text{дБ} \, \text{для} \, \phi = 8^\circ$, $\psi' = \psi'_1 = \psi'_2 = 4.6^\circ \, \text{и} \, \sigma_{\pi}^{0\Gamma\Gamma} = -37 \, \text{дБ} \, \text{для} \, \phi = 4^\circ$, $\psi'' = \psi''_1 = \psi''_2 = 3.4^\circ$. Отсюда, согласно (13), получаем $\gamma = 5.2^\circ$.

(-40)

(< -82)

После определения γ представляется возможным сопоставление результатов измерений с теоретическими расчетами при сильном волнении. Для этого в (8) и (9) следует учесть локальный угол, определяемый как $\psi + \gamma$. Значения γ могут быть различными для разных направлений наблюдения по отношению к крупной волне. Однако распределение $\gamma(\phi)$ оказывается достаточно широким. Поэтому при наблюдении в направлениях, близких к направлению движения волн (что соответствовало условиям наших экспериментов), ошибки не будут большими.

Результаты исследований, приведенные с учетом (8) и (9) к углу скольжения $\psi_{1,2} = 1.7^{\circ}$, представлены на рис. 5. Светлые значки соответствуют спокойному морю, темные — бурному.

Рис. 5. Зависимость σ_{π}^{0} от угла разнесения при разных поляризациях и различных характерах пространственного спектра волнения.

Рис. 6. Изменение поляризационного отношения для разных углов разнесения.

Для сопоставления зависимостей на вертикальной и горизонтальной поляризациях измеренные данные, приведенные на рис. 5, нормированы на соответствующие для данной поляризации значения при $\varphi = 0^{\circ}$ и $\psi_{1,2} = 1.7^{\circ}$. На рис. 5 приведены также расчетные зависимости $\sigma_{\pi\varphi}^{0}/\sigma_{\pi\varphi=0}^{0}$, которые получены с учетом (12) для $S(\chi) \sim \chi^{-4}$ (двумерные неровности) и $S(\chi) \sim \chi^{-3}$ (одномерные неровности):

$$\frac{\sigma_{\pi}^{0BB}(\phi)}{\sigma_{\pi}^{0BB}(\phi=0)} = 1 \text{ для } (S(\chi) \sim \chi^{-4}),$$

$$\frac{\sigma_{\pi}^{0BB}(\phi)}{\sigma_{\pi}^{0BB}(\phi=0)} = \cos(\phi/2) \text{ для } (S(\chi) \sim \chi^{-3}),$$
(14)

$$\frac{\sigma_{\mu}^{011}(\phi)}{\sigma_{\mu}^{011}(\phi=0)} = \frac{\cos^2\phi}{\cos^m(\phi/2)},$$
(15)

где m = 4 для $S(\chi) \sim \chi^{-4}$ и m = 3 для $S(\chi) \sim \chi^{-3}$.

Расчетные и экспериментальные данные показывают, что при вертикальной поляризации излучения азимутальный разнос не приводит к изменению σ_{π}^{0BB} .

В случае горизонтальной поляризации излучения при азимутальных углах разноса $\phi \longrightarrow 90^{\circ}$ наблюдается резкое падение $\sigma_{\pi}^{0\Gamma\Gamma}$, что легко находит геометрическое толкование. Значительный рост $\sigma_{\pi}^{0\Gamma\Gamma}$ при $\phi > 90^{\circ}$ обусловлен увеличением спектральной плотности резонансных составляющих волнения.

Для вертикальной поляризации этот рост компенсируется уменьшением рассеяния с увеличением угла φ : $\sigma_{\alpha}^{0BB} \sim (\cos\varphi + \cos\psi_1 \cos\psi_2)^2 \approx (\cos\varphi + 1) = 4\cos^4(\varphi/2)$, a $S(\chi) \sim \cos^{-4}(\varphi/2)$.

Зависимость $\sigma_{\alpha}^{0BB}/\sigma_{\alpha}^{0\Gamma\Gamma}$ от угла скольжения ϕ для $\lambda = 3.2$ см приведена на рис. 6. Здесь $\psi_1 = \psi_2 = \phi$. Аналогичные кривые, построенные для $\lambda = 10$ см, отличаются от приведенных не более чем 1-2 дБ. При малых углах скольжения ψ рассеяние на вертикальной поляризации значительно превышает рассеяние на горизонтальной.

При ψ_1 , $\psi_2 > 40^\circ$ значение $\sigma_{\pi}^{0BB} / \sigma_{\pi}^{0\Gamma\Gamma}$ не более 10 дБ.

Экспериментальные данные, приведенные в табл. 1, находятся в соответствии с теоретическими зависимостями. Абсолютные значения σ_{π}^{0} , приведенные в табл. 1 для $\lambda = 3.2$ и 10 см, которые получены в одинаковых условиях, позволяют определить частотную зависимость σ_{π}^{0} в бистатическом варианте локации. Отношения $\sigma_{\pi\lambda_{1}}^{0}/\sigma_{\pi\lambda_{2}}^{0}$ лежат в пределах (λ_{1}/λ_{2})⁻¹⁻¹ при среднем $\sigma_{\pi}^{0}(\lambda) \sim \lambda^{-0.25}$, что согласуется с данными для обратного рассеяния, приведенными в работе (Guinard, Daley, 1970), и расчетами согласно (8) и (9) для $S(\chi) \sim \chi^{-4-2}$.

АНАЛИЗ ЗНАЧЕНИЙ $\sigma^0_{\scriptscriptstyle A}$ ПРИ РАЗНЫХ ПОЛЯРИЗАЦИЯХ

Экспериментальное подтверждение справедливости механизма квазирезонансного рассеяния радиоволн поверхностью моря (Калмыков и др., 1966а; Калмыков и др., 1966б; Bass et al., 1968; Басс, Фукс, 1972) при бистатической радиолокации позволяет использовать полученные выраже-

ния для расчета и анализа зависимостей $\sigma^0_{_{\rm I}}$ в ши-

Рис. 7. Расчетная зависимость σ_{π}^{0} морской поверхности от углов разнесения при вертикальной поляризации излучения и приема (*W* < 3 м/с).

роком диапазоне углов разнесения при любых поляризациях облучения и приема.

На рис. 7 и 8 приведены зависимости $\sigma_{\pi}^{0}(\psi_{2})$, рассчитанные по (8) и (9) для вертикальной и горизонтальной поляризаций излучения и приема соответственно при слабом волнении (скорость ветра W < 3 м/с) для различных фиксированных значений углов ψ_{1} и ϕ . Область зеркальных углов ($\phi = 0^\circ$ и $\psi_2 > 160^\circ$) из рассмотрения исключается, так как σ_{π}^0 здесь не может быть описана формулами (8) и (9). На этих же рисунках для сравнения приведены и σ_c^0 , рассчитанные для совмещенной РЛС ($\psi_1 = \psi_2, \phi = 0^\circ$).

Как видно из рис. 7, σ_{α}^{0BB} всегда больше $\sigma_{\alpha}^{0\Gamma\Gamma}$, за исключением некоторых узких областей углов ψ_2 .

Рис. 8. Расчетная зависимость σ_{d}^{0} морской поверхности от углов разнесения при горизонтальной поляризации излучения и приема (*W* < 3 м/с).

При $\phi \neq 0^{\circ}$, например, $140^{\circ} > \psi_2 > 130^{\circ}$ и $\phi = 45^{\circ}$. При малых углах ψ_1 и ψ_2 различие между σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ особенно велико, достигая значения -40...-50 дБ. При больших ψ_2 это различие уменьшается и составляет -10...-15 дБ.

В некоторых точках диаграмм рассеяния наблюдается резкое уменьшение σ_{π}^{0} как на вертикальной, так и на горизонтальной поляризациях: $\sigma_{\pi}^{0\Gamma\Gamma} \longrightarrow 0$ при $\phi \longrightarrow 90^{\circ}$, а $\sigma_{\pi}^{0BB} \longrightarrow 0$ при $\psi_{2} \longrightarrow 90^{\circ}$ и $\phi = 90^{\circ}$; $\psi_{2} = 135^{\circ}$ и $\phi = 45^{\circ}$. Интересным является влияние изменение угла ψ_2 на величину σ_{π}^0 . При $\psi_1 < 0.1^\circ$ как на вертикальной, так и на горизонтальной поляризациях σ_{π}^0 имеет малое значение. С ростом $\psi_1 \sigma_{\pi}^0$ резко увеличивается. Так, изменение $\psi_1 c 0.1^\circ$ до 1° приводит к увеличению σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ примерно на 13 дБ, а с 0.1° до 5° – примерно на 40 дБ. Увеличение σ_{π}^0 на вертикальной поляризации с ростом ψ_1 идет быстрее, чем на горизонтальной, в силу бо-

лее крутой зависимости σ_{a}^{0BB} от угла ψ_{2} (рис. 7, 8). При дальнейшем увеличении ψ_{1} рост σ_{a}^{0} замедляется. Так, при изменении ψ_{1} от 5° до 10° σ_{a}^{0BB} увеличивается на 3 дБ, а $\sigma_{a}^{0\Gamma\Gamma}$ на 6 дБ. При увеличении ψ_{1} от 10° до 15° σ_{a}^{0BB} возрастает на 2 дБ, а $\sigma_{a}^{0\Gamma\Gamma}$ на 4 дБ.

Сравнение абсолютных значений σ_{π}^{0} и σ_{c}^{0} показывает, что σ_{π}^{0} меньше σ_{c}^{0} при $\psi_{1} < \psi_{2}$ и $\psi = \psi_{2}$. Чем меньше угол зондирования ψ_{1} , тем больше различие между σ_{π}^{0} и σ_{c}^{0} . Следует отметить, что $\sigma_{\pi}^{0BB} / \sigma_{c}^{0BB} > \sigma_{\pi}^{0\Gamma\Gamma} / \sigma_{c}^{0\Gamma\Gamma}$. Большой интерес представляет область углов ψ_{2} вблизи 90°. Здесь $\sigma_{\pi}^{0} \ll \sigma_{c}^{0}$ вследствие наличия зеркальных отражений от поверхности для совмещенной РЛС. При $\psi_{2} > 160^{\circ}$ – 170° и $\phi = 0$ наблюдается обратное явление. В этой области углов двухпозиционное рассеяние определяется зеркальными отражениями от поверхности и имеет значительную интенсивность.

Уравнение (8) из работы (Фукс, 1966) позволяет получить выражения для σ_{π}^{0} на поляризации, ортогональной излучаемой.

При излучении на горизонтальной поляризации и приеме на вертикальной составляющей отраженного сигнала

$$\sigma_{\pi}^{0\Gamma B} =$$

$$= 16\pi\kappa^{4}\varepsilon\varepsilon^{*}\frac{\sin^{4}\psi_{1}\sin^{2}\psi_{2}\sin^{2}\varphi}{\left(1+\sqrt{\varepsilon}\sin\psi_{1}\right)^{2}\left(1+\sqrt{\varepsilon}\sin\psi_{2}\right)^{2}}S(\chi_{0}).$$
⁽¹⁶⁾

При вертикальной поляризации падающего излучения и приеме отраженного сигнала на горизонтальной поляризации

$$\sigma_{\pi}^{0BT} =$$

$$= 16\pi\kappa^{4}\varepsilon\varepsilon^{*}\frac{\sin^{2}\psi_{1}\sin^{4}\psi_{2}\sin^{2}\varphi}{\left(1+\sqrt{\varepsilon}\sin\psi_{1}\right)^{2}\left(1+\sqrt{\varepsilon}\sin\psi_{2}\right)^{2}}S(\chi_{0}).$$
⁽¹⁷⁾

Различие выражений для $\sigma_{\alpha}^{0\Gamma B}$ и $\sigma_{\alpha}^{0B\Gamma}$ обусловлено пространственным разнесением приемника и передатчика и не противоречит теореме взаимности, так как при замене местами приемника и передатчика угол ψ_1 принимает значение ψ_2 и наоборот.

Как следует из (16) и (17), в отсутствие азимутального разноса ($\phi = 0^{\circ}$) $\sigma_{\pi}^{0\Gamma B}$ и $\sigma_{\pi}^{0B\Gamma} = 0$. Деполяризация возникает лишь при $\phi \neq 0^{\circ}$ вследствие нарушения ортогональности векторов поляризации излученного и принятого сигналов.

На рис. 7 и 8 приведены примеры расчета $\sigma_{a}^{0\Gamma B}$ и $\sigma_{a}^{0B\Gamma}$ с использованием выражений (16) и (17). Видно, что $\sigma_{a}^{0\Gamma B}$ всегда меньше $\sigma_{a}^{0B\Gamma}$ при $\psi_{1} < \psi_{2}$. Их отношение равно

$$\frac{\sigma_{\pi}^{0\Gamma\Gamma}}{\sigma_{\pi}^{0BB}} = \frac{\sin^2 \psi_1}{\sin^2 \psi_2}.$$
 (18)

Из (16) и (17) следует, что в диапазоне углов $\psi_2 = 20^\circ - 170^\circ$ справедливо условие $\sigma_{\pi}^{0\Gamma B} < \sigma_{\pi}^{0\Gamma T} < \sigma_{\pi}^{0B\Gamma}$, а при $\psi_2 < 20^\circ$ справедливо $\sigma_{\pi}^{0\Gamma T} < \sigma_{\pi}^{0\Gamma B}$. Как правило, σ_{π}^{0BB} больше σ_{π}^{0} на скрещенной поляризации.

Обратное явление наблюдается в ситуациях разнесения, при которых происходит резкое уменьшение σ_{π}^{0BB} (рис. 7). Уменьшение угла ψ_1 приводит также к резкому уменьшению $\sigma_{\pi}^{0\Gamma B} \sim \sin^4 \psi_1$ и более медленному $\sigma_{\pi}^{0B\Gamma} \sim \sin^4 \psi_1$.

При рассмотрении влияния длины волны РЛС на σ_{α}^{0} из полученных выражений (8), (9), (11), (16) и (17) следует, что σ_{α}^{0BB} , $\sigma_{\alpha}^{0B\Gamma}$, $\sigma_{\alpha}^{0\Gamma B}$ слабо зависят от длины волны λ , также, что $\sigma_{\alpha}^{0\Gamma\Gamma}$ не зависит от нее.

Полученные результаты позволяют перейти к расчету σ_{π}^{0} в реальных условиях — при наличии волнения. Определим влияние крупных волн на величину удельного сечения рассеяния. Выше отмечалось, что появление крупных волн приводит к изменению угла наклона рассеивающей ряби относительно направлений источника излучения и приема и, вследствие этого, к модуляции интенсивности сигнала, рассеянного рябью. В этом случае учет влияния крупных волн на величину σ_{π}^{0} сводится к усреднению σ_{π}^{0} , выполненных по формулам (8), (9) по некоторой области углов ψ_{1} , ψ_{2} , φ . Величина этой области усреднения γ определяется дисперсией углов наклонов поверхности и является функцией скорости ветра и направления движения волн.

На рис. 9 приведены экспериментальные зависимости величины γ от скорости ветра W для случая наблюдения вдоль (1) и поперек (2) движения волн. Приведенные зависимости $\gamma(W)$ получены для всего спектра волнения. В реальных условиях ширина спектра морских волн, оказывающих влияние на характеристики рассеянного сигнала, ограничена длиной радиоволны.

Рис. 9. Зависимость дисперсии углов наклонов поверхности моря от скорости ветра: *1* – по ветру; *2* – поперек ветра.

Влияние крупных волн на величину σ_{π}^{0} особенно сильно сказывается в области углов ψ_{1}, ψ_{2}, ϕ , где σ_{π}^{0} претерпевает резкие изменения (рис. 7, 8). С ростом волнения (особенно при малых ψ_{1}) σ_{π}^{0} резко увеличивается как на вертикальной поляризации, так и на горизонтальной при любых значениях ϕ . Даже при облучении поверхности под скользящими углами σ_{π}^{0} имеет достаточно высокие значения. При развитом волнении уменьшение угла зондирования практически не приводит к уменьшению σ_{π}^{0} . При среднем волнении и скользящих углах зондирования σ_{π}^{0} принимает такие значения, которые соответствуют σ_{π}^{0} при отсутствии крупных волн и $\psi_{1} \approx 3^{\circ} - 5^{\circ}$ в любой ситуации разнесения.

При дальнейшем увеличении балльности волнения скорость роста σ_{π}^{0} замедляется. При $\psi_{1} \approx \approx 6^{\circ} - 8^{\circ}$ волнению 7–8 баллов соответствует σ_{π}^{0} такой же величины, как и σ_{π}^{0} в отсутствие волнения. При этом имеющиеся при некоторых углах разнесения резкие уменьшения σ_{π}^{0} (рис. 7, 8) сглаживаются, значения σ_{π}^{0} в минимумах составляют – 30...–40 дБ.

На рис. 10 в качестве примера приведены зависимости σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ от скорости ветра, по которой можно судить о скорости нарастания σ_{π}^{0} с ростом балльности волнения. При этом $\psi_{1} = 0.1^{\circ}$, $\psi_{2} = 30^{\circ}$, $\varphi = 0^{\circ}$. Зависимости, приведенные на рис. 10, получены из расчетов σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ по

Рис. 10. Зависимость σ_{π}^{0} морской поверхности от скорости ветра при вертикальной (BB) и горизонтальной (ГГ) поляризации излучения и приема.

формулам (8), (9) и экспериментальных данных (Калмыков и др., 1966а; Hunter, Senior, 1966).

Наличие крупных волн не приводит к существенному изменению соотношения между σ_{π}^{0BB} и $\sigma_{\pi}^{0\Gamma\Gamma}$ при $\psi_2 > 20^\circ$. Как и в отсутствие крупных волн, $\sigma_{\pi}^{0BB} > \sigma_{\pi}^{0\Gamma\Gamma}$ на 15–20 дБ. В отличие от предыдущих расчетов, это различие на таком же уровне сохраняется при малых ψ_1 , ψ_2 . $\sigma_{\pi}^{0BB} \approx \sigma_{\pi}^{0\Gamma\Gamma}$ лишь в области зеркального отражения ($\psi_2 > 160^\circ$).

Большой практический интерес представляет сравнение σ_{a}^{0} и σ_{c}^{0} при наличии на морской поверхности крупных волн. Как показывает расчет, $\sigma_{\pi}^{0} < \sigma_{c}^{0}$, когда $\psi_{1} < \psi_{2}$ и $\psi = \psi_{2}$ в достаточно большом диапазоне углов разнесения. На рис. 11 приведены результаты расчета отношения $\sigma_c^0/\sigma_{_{\!\!R}}^0(\psi_2)$ при $\psi_1 = 0.1^\circ, \ \phi = 0^\circ$ для горизонтальной (сплошные линии) и вертикальной (пунктирные линии) поляризаций излучения и приема для трех вариантов волнения (скорости ветра $W \approx 0$ м/с, т.е. в отсутствие крупных волн, при W = 5 м/с uW = 15 м/с). Как видно, усиление волнения приводит к резкому уменьшению отношения σ_c^0/σ_a^0 . Однако различие между σ_c^0 и σ_{π}^0 сохраняется даже при очень бурном море в большей части верхней полусферы $\sigma_c^{0\Gamma\Gamma} / \sigma_{\pi}^{0\Gamma\Gamma} > \sigma_c^{0BB} / \sigma_{\pi}^{0BB}$. Это определяется разным наклоном зависимостей $\sigma^0_c(\psi)$ на вертикальной и горизонтальной поляризациях (рис. 7, 8).

Рис. 11. Расчетные значения отношения $\sigma_c^0 / \sigma_{\pi}^0$ в зависимости от угла рассеяния ψ_2 и скорости ветра *W* при вертикальной (пунктирная линия) и горизонтальной (сплошная линия) поляризациях излучения и приема.

Уменьшение угла ψ_1 уже при среднем волнении слабо сказывается на изменении отношения $\sigma_c^0/\sigma_{\pi}^0$. Это обусловлено наклоном рассеивающей ряби на угол γ относительно направления облучения склонами крупных волн.

Особого внимания заслуживает область углов $\psi_2 = \psi \approx 90^\circ$, когда величина отражений от моря значительна при совмещенной радиолокации. Как видно из рис. 11, область углов $\psi_2 = \psi$, где $\sigma_c^0/\sigma_{\pi}^0 \ge 1$, достаточно широка. Кроме области $\psi_2 = \psi \approx 90^\circ$, есть ситуации разнесения, при которых также $\sigma_c^0 \ge \sigma_{\pi}^0$. Таким случаям соответствуют значения ψ_2 , ψ , где σ_{π}^0 резко уменьшается даже при сильном волнении (рис. 7, 8). Ширина этих областей невелика и составляет 5°–10°.

Вследствие тех же причин (наличие зеркальных отражений) наблюдается существенное различие σ_c^0 и σ_{π}^0 при $\psi_2 = \psi \approx 90^\circ$, в области углов $\psi_2 = \psi \approx 180^\circ - \psi_1$, когда $\sigma_{\pi}^0 \ge \sigma_c^0$.

Если в отсутствие крупных волн рассеяние на скрещенной поляризации обусловлено нарушением ортогональности векторов поляризации излучаемого и принимаемого сигналов при разнесении в пространстве приемной и передающей антенн, то с появлением крупных волн значения

крупными волнами (Guinard, Daley, 1970). Из-за ов этого $\sigma_{\pi}^{0B\Gamma}$ и $\sigma_{\pi}^{0\Gamma B} \neq 0$ при $\phi = 0^{\circ}$. Деполяризация на склонах волн будет максимальной при облучении и наблюдении поверхности поперек движения волн.

Как следует из проведенных расчетов и выводов, при малых ψ_1 с ростом балльности волнения $\sigma_{\alpha}^{0B\Gamma}$ и $\sigma_{\alpha}^{0\Gamma B}$ резко увеличиваются, однако соотношения между σ_{α}^{0BB} , $\sigma_{\alpha}^{0B\Gamma}$, $\sigma_{\alpha}^{0\Gamma\Gamma}$ и $\sigma_{\alpha}^{0\Gamma B}$ остаются такими же, как и в отсутствие крупных волн. Так, при среднем волнении $\sigma_{\alpha}^{0B\Gamma}$ превышает $\sigma_{\alpha}^{0\Gamma\Gamma}$ на 5–10 дБ, а $\sigma_{\alpha}^{0\Gamma B}$ ниже $\sigma_{\alpha}^{0\Gamma\Gamma}$ на 5–10 дБ при $\psi_2 > 15^{\circ}$ –20°. Если $\psi_2 < < 15^{\circ}$, то $\sigma_{\alpha}^{0B\Gamma}$ и $\sigma_{\alpha}^{0\Gamma B}$ отличаются незначительно и $\sigma_{\alpha}^{0\Gamma\Gamma}$ в среднем больше на 5–10 дБ.

 $\sigma_{\pi}^{0B\Gamma}$ и $\sigma_{\pi}^{0\Gamma B}$ возрастают. Это происходит вслед-

ствие локального изменения углов облучения ψ_1

и рассеяния ψ_2 , а также в результате появления эффектов деполяризации за счет наклона ряби

Так как физические механизмы процессов рассеяния радиоволн поверхностью моря одинаковы как для совмещенного, так и бистатического вариантов локации, то можно сделать качественные выводы о закономерностях двухпозиционного рассеяния радиоволн морской поверхностью при круговой поляризации. Как следует из (Виноградов и др., 1973), при малых ψ_1 и для $\psi_2 = 180^\circ - \psi_1$

$$\sigma_{\alpha}^{011} = \sigma_{\alpha}^{022} \approx \frac{\sigma_{\alpha}^{0BB} + \sigma_{\alpha}^{0\Gamma\Gamma}}{4} + \sigma_{\alpha}^{0B\Gamma}, \qquad (19)$$

$$\sigma_{\pi}^{012} = \sigma_{\pi}^{021} \approx \frac{\sigma_{\pi}^{0BB} + \sigma_{\pi}^{0\Gamma\Gamma}}{4},$$
 (20)

где σ_{α}^{011} , σ_{α}^{022} – УЭПР поверхности на круговой поляризации правого и левого вращений соответственно, σ_{α}^{012} , σ_{α}^{021} – УЭПР поверхности на скрещенных поляризациях правого и левого вращений.

Из (19) следует, что различия σ_{π}^{0} на круговых поляризациях (основной σ_{π}^{011} и скрещенной σ_{π}^{012}) существуют лишь для $\sigma_{\pi}^{0B\Gamma}$. Поэтому $\sigma_{\pi}^{011} \ge \sigma_{\pi}^{012}$. Поскольку $\sigma_{\pi}^{0BB} \ge \sigma_{\pi}^{0\Gamma\Gamma}$, а $\sigma_{\pi}^{0B\Gamma}$ меньше σ_{π}^{0BB} на 5–15 дБ, то можно ожидать, что

$$\sigma_{\pi}^{011} = \sigma_{\pi}^{022} = \sigma_{\pi}^{012} = \sigma_{\pi}^{021} \approx \frac{\sigma_{\pi}^{0BB}}{4},$$
 (21)

то есть на круговой поляризации σ_{π}^{0} на 6 дБ ниже, чем на вертикальной. Эти выводы подтверждаются нашими измерениями на волне $\lambda = 3.2$ см в совмещенном варианте излучения и приема.

При разнесении приемника и передатчика РЛС на 180° в азимутальной плоскости в области углов $\psi_2 \approx 180^\circ - \psi_1$ основной вклад в рассеянный сигнал вносят зеркальные отражения от склонов волн. Вследствие этого σ_{π}^0 имеет довольно высокое значение, и в направлении зеркального отражения $\sigma_{\pi}^0 \approx \sigma_c^0$ ($\psi = 90^\circ$) не зависит от поляризации. Ширина области зеркальных отражений как в азимутальной, так и в угломестной областях определяется дисперсией углов наклонов крупных волн и, следовательно, зависит от балльности волнения.

Результаты измерений, представленные в (Калмыков и др., 19666; Hunter, Senior, 1966), позволяют получить значения σ_{π}^{0} в зеркальном и близком к нему направлениях, если воспользоваться выражением (7).

Так, для $\lambda = 3.2$ см в зеркальном направлении при $\psi_1 = 2.5^\circ$, $\psi_2 = 177.5^\circ$, $\sigma_{\pi}^{0BB} = \sigma_{\pi}^{0\Gamma\Gamma} = +5 \, \text{дБ/м}^2$, $\sigma_{\pi}^{0B\Gamma} = \sigma_{\pi}^{0\Gamma B} = -10 \, \text{дБ/м}^2$. При уходе от зеркального направления $\sigma_{\pi}^{0\Gamma\Gamma} > \sigma_{\pi}^{0BB}$. Превышение $\sigma_{\pi}^{0\Gamma\Gamma}$ над σ_{π}^{0BB} вблизи зеркальных углов обусловлено, повидимому, резким увеличением интенсивности избирательного рассеяния на горизонтальной поляризации в случае, когда ф приближается к 180°. Как следует из работы (Виноградов и др., 1973), для круговой поляризации при зеркальном отражении и малых ф справедливы соотношения

$$\sigma_{\alpha}^{0BB} = \sigma_{\alpha}^{0\Gamma\Gamma} = \sigma_{\alpha}^{021} = \sigma_{\alpha}^{012},$$

$$\sigma_{\alpha}^{0B\Gamma} = \sigma_{\alpha}^{0\Gamma B} = \sigma_{\alpha}^{011} = \sigma_{\alpha}^{022}.$$
(22)

Данные однопозиционных измерений показывают, что при сильном волнении и малых ψ наблюдается существенная зависимость σ_c^0 от длины волны λ . Чем короче длина волны, тем σ_c^0 больше по сравнению с расчетом. Несоответствие эксперимента расчету можно объяснить наличием отражений от брызг, возникающих при обрушивании волн. Такие отражения по характеру подобны рассеянию от интенсивных дождей. Рассеяние от подобных образований является рэлеевским и имеет резкую частотную зависимость ($\sigma \sim \lambda^{-4}$).

Проявление подобных эффектов следует ожидать и при рассеянии в случае бистатической локации для скользящих углов облучения моря ($\psi_1 < 5^\circ$) и сильного волнения.

выводы

Экспериментальные и теоретические исследования двухпозиционного рассеяния радиоволн поверхностью моря при бистатической локации показывают, что это рассеяние имеет квазирезонансный характер. Это близко по своей природе к однопозиционному рассеянию, рассмотренному в множестве работ, например (Калмыков и др., 1966а; Калмыков и др., 19666; Hunter, Senior, 1966; Басс, Фукс, 1972; Курекин и др., 2001; Бондур, 2004; Курекин и др., 2008).

Особенности рассеяния радиоволн на разных поляризациях связаны с диэлектрической проницаемостью морской воды є и геометрией разнесения приемника и передатчика. Рассеяние на вертикальной поляризации зависит от є и практически не зависит от разнесения по азимуту. Рассеяние на горизонтальной поляризации не является функцией є. В некоторых ситуациях разнесения отмечаются резкие уменьшения отражений, обусловленные ортогональностью векторов поляризации излученного и рассеянного сигналов.

Частотная зависимость двухпозиционного рассеяния слабо отличается от обратного рассеяния в моностатическом варианте радиолокации.

Полученные результаты исследований могут быть использованы при создании спутниковых радиолокаторов и при аэрокосмическом мониторинге поверхности океана.

СПИСОК ЛИТЕРАТУРЫ

Анохин И.Г., Горшков А.А. Вариант реализации обзора Земли с двухпозиционным синтезированием // Фазотрон. Информационно-аналитический журнал. 2006. № 3–4. С. 34–35.

Басс Ф.Г., Фукс И.М. Рассеяние волн на статистически неровной поверхности. М.: Наука, 1972. 424 с.

Бондур В.Г. Аэрокосмические методы в современной океанологии. Т. 1. Физика. Химия. Биология. М.: Наука, 2004. С. 55–117 + 8 стр. цветн. вклеек.

Бондур В.Г., Гребенюк Ю.В. Дистанционная индикация антропогенных воздействий на морскую среду, вызванных заглубленными стоками: моделирование, эксперименты // Исслед. Земли из космоса. 2001. № 6. С. 49–67.

Виноградов Л.Г., Калмыков А.И., Курекин А.С. и др. О поляризационных характеристиках радиолокационных сигналов, рассеянных поверхностью моря при малых углах скольжения // Докл. 3-го Межведомственного совещания по вопросам поляризационной структуры радиосигналов. Томск, 1973. С. 42–44.

Волков А.М., Пичугин А.П., Шишанов А.В. и др. Космический радиолокатор с синтезированной апертурой, формирующий изображение в реальном времени: Патент РФ на изобретение № 2158008. 2000. 18 с.

Вопросы перспективной радиолокации / Под. ред. Соколова А.В. и др. М.: Радиотехника, 2003. 512 с.

Калмыков А.И., Курекин А.С., Островский И.Е., Пустовойтенко В.В. Двухпозиционное рассеяние радиоволн поверхностью моря при малых углах скольжения // Изв. вузов. Радиофизика. 1966а. Т. 10. № 6. С. 1073– 1082.

Калмыков А.И., Островский И.Е., Розенберг А.Д., Фукс И.М. Обратное рассеяние сантиметровых радиоволн взволнованной поверхностью моря при малых углах скольжения // Изв. вузов. Радиофизика. 19666. Т. 9. № 6. С. 1095–1099.

Курекин А.С., Пичугин А.П., Волков А.М. и др. Принципы построения космической радиолокационной системы бокового обзора непрерывного действия // Зарубежная радиоэлектроника. Успехи современной радиоэлектроники. 2001. № 12. С. 35–43.

Курекин А.С., Яцевич С.Е., Калмыков И.А. Исследование вторичных излучений радиоволн взволнованной поверхностью моря при разнесении в пространстве приемника и передатчика РЛС // Электромагнитные волны и электронные системы. 2008. Т. 13. № 7. С. 4–29.

Филипс О.М. Динамика верхнего слоя океана: пер. с англ. М.: Мир, 1969. 420 с.

Фукс И.М. К теории рассеяния радиоволн на взволнованной поверхности моря // Изв. вузов. Радиофизика. 1966. Т. 9. № 5. С. 876–882.

Bass F.G., Fuks I.M., Kalmykov A.I., Ostrovsky I.E., Rosenberg A.D. Very High Frequency Radiowave Scattering by Distributed Sea Surface // IEEE Trans. Ant. Prop. 1968. AP-16. № 5. P. 554–568.

Guinard N.W., Daley J.C. An Experimental Study of a Sea Clutter Model // Proc. IEEE. 1970. V. 58. № 46. P. 543–550.

Hartnet M.P., Davis M.E. Bistatic Surveillance of Operations // IEEE Radar Conference. 2001. P. 75.

Hunter I.M., Senior T.B. Experimental Studies of Sea Surface Effects on Low-Angle Radars // Proc. IEEE. 1966. V. 113. № 11. P. 1731–1740.

Moore R.K., Parkins B.E. Omnidirectional Scattering of Acoustic Waves from Rough Surfaces of Known Statistics // J. Acoust. Soc. Amer. 1966. V. 40. № 1. P. 170–175.

Pidgeon V.W. Bistatic Cross Section of the Sea // IEEE Trans. Ant. Prop. 1966. AP-14. № 3. P. 405–406.

Radio Skattering by the Sea Surface During Bistatic Location

V. G. Bondur¹, A. D. Dobrozrakov², A. S. Kurekin³, A. A. Kurekin⁴, A. P. Pichugin², S. Ye. Yatsevich³

¹Scientific Center of Aerospace Monitoring "Aerocosmos", Moscow

²OAO Gazprom Promgaz, Moscow

³Usikov Institute of Radiophysics and Electronics, National Academy of Sciences of Ukraine, Kharkov

⁴University of Central Lancashire, Preston, United Kingdom

The results of measuring the specific section of scattering by the sea surface of radio waves 3.2 and 10 sm. wavelengths under bistatic radiolocation are presented. The features of radio scattering by the sea surface at any polarizations of radiation and reception in overhead hemisfere of space are analyzed on a base of selector gear model. The measurement data are compared with the calculation that showed the applicability of the bistatic scattering model. Experimental measurements correspond with the computer modeling characteristics for the various conditions of bistatic radiolocation.

Key words: sea surface, bistatic radiolocation, polarization, two-position dispersion, modeling.